One of the major issues in the computational mechanics is to take into account the geometrical complexity. To overcome this difficulty and to avoid the expensive mesh generation, geometrically unfitted methods, i.e. the numerical methods using the simple computational meshes that do not fit the boundary of the domain, and/or the internal interfaces, have been widely developed. In the present work, we investigate the performances of an unfitted method called $\phi$-FEM that converges optimally and uses classical finite element spaces so that it can be easily implemented using general FEM libraries. The main idea is to take into account the geometry thanks to a level set function describing the boundary or the interface. Up to now, the $\phi$-FEM approach has been proposed, tested and substantiated mathematically only in some simplest settings: Poisson equation with Dirichlet/Neumann/Robin boundary conditions. Our goal here is to demonstrate its applicability to some more sophisticated governing equations arising in the computational mechanics. We consider the linear elasticity equations accompanied by either pure Dirichlet boundary conditions or by the mixed ones (Dirichlet and Neumann boundary conditions co-existing on parts of the boundary), an interface problem (linear elasticity with material coefficients abruptly changing over an internal interface), a model of elastic structures with cracks, and finally the heat equation. In all these settings, we derive an appropriate variant of $\phi$-FEM and then illustrate it by numerical tests on manufactured solutions. We also compare the accuracy and efficiency of $\phi$-FEM with those of the standard fitted FEM on the meshes of similar size, revealing the substantial gains that can be achieved by $\phi$-FEM in both the accuracy and the computational time.
翻译:计算机制中的主要问题之一是考虑几何复杂性。 要克服这一困难, 避免昂贵的网格生成, 并且避免成本高昂的网格生成, 地理上不适宜的方法, 即使用不符合域界的简单计算网格的数值方法, 以及/ 或者内部界面, 已经得到了广泛的开发。 在目前的工作中, 我们调查了一种称为$\phi$- FEM 的不适宜方法的性能, 该方法最优化地集中, 并使用经典的有限元素空间, 以便使用一般的 FEM 库进行比较。 主要的想法是, 将几何方差的精确度纳入描述边界或界面的平面功能。 到目前为止, $\phy$- FEM 的计算方法, 仅在一些最简单的情况下才被提出、 测试和证实: Poisson 和 Drichillichlet/ Neumann/ Robin 边界条件。 我们这里的目标是通过计算机制中的某些更精密的公式来显示其适用性。 我们还考虑直线式的网格方程方程方程方程式方程式方程式, 由纯的边界条件或混合的平面的平面的平面的平面结构, 直方块的平坦的平面结构, 直径的平面、 直径的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平, 。