Exact null distributions of goodness-of-fit test statistics are generally challenging to obtain in tractable forms. Practitioners are therefore usually obliged to rely on asymptotic null distributions or Monte Carlo methods, either in the form of a lookup table or carried out on demand, to apply a goodness-of-fit test. Stephens (1970) provided remarkable simple and useful transformations of several classic goodness-of-fit test statistics that stabilized their exact-$n$ critical values for varying sample sizes $n$. However, detail on the accuracy of these and subsequent transformations in yielding exact $p$-values, or even deep understanding on the derivation of several transformations, is still scarce nowadays. We illuminate and automatize, using modern tools, the latter stabilization approach to (i) expand its scope of applicability and (ii) yield semi-continuous exact $p$-values, as opposed to exact critical values for fixed significance levels. We show improvements on the stabilization accuracy of the exact null distributions of the Kolmogorov-Smirnov, Cram\'er-von Mises, Anderson-Darling, Kuiper, and Watson test statistics. In addition, we provide a parameter-dependent exact-$n$ stabilization for several novel statistics for testing uniformity on the hypersphere of arbitrary dimension. A data application in astronomy illustrates the benefits of the advocated stabilization for quickly analyzing small-to-moderate sequentially-measured samples.


翻译:因此,从业者现在通常不得不依赖零零分配或蒙特卡洛方法,无论是以看一看表格的形式,还是根据需求进行,以应用 " 优质 " 测试。Stephens(1970年)对若干典型的 " 优质 " 测试统计数据进行了显著、简单和有用的转换,稳定了其精确-美元关键值,而其抽样规模不同。然而,这些和随后的转换的准确性,即产生精确的美元价值,甚至对若干变异的深刻理解,现在仍然很少。我们使用现代工具,即后一种稳定化方法,以(一) 扩大其适用性范围,(二) 产生半连续的精确的美元值,而不是固定价值水平的精确关键值。我们展示了Kolmogorov-Smirnov、Cram\'er-von Mises、Anderson-Dardimalityalityality的精确分布准确无误的准确性分布的准确性准确性准确性准确性,并显示对若干次转换数据的快速性分配的准确性分布的准确性,Alistal-alityalityalityalityality Stabiality统计的测试提供了若干项。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
43+阅读 · 2021年5月26日
专知会员服务
39+阅读 · 2020年9月6日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Towards an Analytical Definition of Sufficient Data
Arxiv
0+阅读 · 2022年2月7日
Arxiv
0+阅读 · 2022年2月5日
Arxiv
0+阅读 · 2022年2月4日
Error Estimates for Adaptive Spectral Decompositions
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
43+阅读 · 2021年5月26日
专知会员服务
39+阅读 · 2020年9月6日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员