We present SGoLAM, short for simultaneous goal localization and mapping, which is a simple and efficient algorithm for Multi-Object Goal navigation. Given an agent equipped with an RGB-D camera and a GPS/Compass sensor, our objective is to have the agent navigate to a sequence of target objects in realistic 3D environments. Our pipeline fully leverages the strength of classical approaches for visual navigation, by decomposing the problem into two key components: mapping and goal localization. The mapping module converts the depth observations into an occupancy map, and the goal localization module marks the locations of goal objects. The agent's policy is determined using the information provided by the two modules: if a current goal is found, plan towards the goal and otherwise, perform exploration. As our approach does not require any training of neural networks, it could be used in an off-the-shelf manner, and amenable for fast generalization in new, unseen environments. Nonetheless, our approach performs on par with the state-of-the-art learning-based approaches. SGoLAM is ranked 2nd in the CVPR 2021 MultiON (Multi-Object Goal Navigation) challenge. We have made our code publicly available at \emph{https://github.com/eunsunlee/SGoLAM}.


翻译:我们提出SGOLAM, 用于同步目标定位和映射, 这是多目标导航的简单而高效的算法。 我们的目标是让代理器在现实的 3D 环境中导航到目标物体序列。 我们的管道充分利用经典导航方法的力量, 将问题分解成两个关键组成部分: 映射和目标定位。 映射模块将深度观测转换成占用图, 目标本地化模块标记目标对象的位置。 代理器的政策是使用两个模块提供的信息来确定的: 如果找到当前目标, 计划实现目标, 否则, 进行探索。 由于我们的方法不需要对神经网络进行任何培训, 它可以以现成的方式使用, 并且可以在新的、 看不见环境中快速普及。 然而, 我们的方法与基于状态的学习方法相当。 SGOLAMAM 排名第二, 在 CVPR21 多功能中排名第二 。 (Multi-Objectral ) 我们的公共代码是 。

0
下载
关闭预览

相关内容

专知会员服务
229+阅读 · 2021年6月3日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
8+阅读 · 2021年11月14日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
5+阅读 · 2018年10月15日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员