There are several approaches for encoding source code in the input vectors of neural models. These approaches attempt to include various syntactic and semantic features of input programs in their encoding. In this paper, we investigate Code2Snapshot, a novel representation of the source code that is based on the snapshots of input programs. We evaluate several variations of this representation and compare its performance with state-of-the-art representations that utilize the rich syntactic and semantic features of input programs. Our preliminary study on the utility of Code2Snapshot in the code summarization and code classification tasks suggests that simple snapshots of input programs have comparable performance to state-of-the-art representations. Interestingly, obscuring input programs have insignificant impacts on the Code2Snapshot performance, suggesting that, for some tasks, neural models may provide high performance by relying merely on the structure of input programs.


翻译:神经模型输入矢量的编码源代码有几种方法。 这些方法试图将输入程序的各种合成和语义特征纳入编码中。 在本文中, 我们调查了代码2Snapshot, 这是源代码的新表述, 以输入程序的快照为基础。 我们评估了这种表达方式的几种不同, 并将其性能与使用输入程序丰富的合成和语义特征的最新表现进行比较。 我们对代码总和和和代码分类任务中代码2Snapshot的实用性的初步研究表明, 输入程序的简单快照可以与最新表现相似。 有趣的是, 模糊输入程序对代码2Snapshot的性能影响不大, 表明对于某些任务来说, 神经模型仅依靠输入程序的结构就可以提供高性能。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2022年11月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员