The aim of this work is to study the dual and the algebraic dual of an evaluation code using standard monomials and indicator functions. We show that the dual of an evaluation code is the evaluation code of the algebraic dual. We develop an algorithm for computing a basis for the algebraic dual. Let $C_1$ and $C_2$ be linear codes spanned by standard monomials. We give a combinatorial condition for the monomial equivalence of $C_1$ and the dual $C_2^\perp$. Moreover, we give an explicit description of a generator matrix of $C_2^\perp$ in terms of that of $C_1$ and coefficients of indicator functions. For Reed--Muller-type codes we give a duality criterion in terms of the v-number and the Hilbert function of a vanishing ideal. As an application, we provide an explicit duality for Reed--Muller-type codes corresponding to Gorenstein ideals. In addition, when the evaluation code is monomial and the set of evaluation points is a degenerate affine space, we classify when the dual is a monomial code.
翻译:本文旨在使用标准单项式和指示函数研究评价码的对偶和代数对偶。我们证明了评价码的对偶是代数对偶的评价码。我们开发了一种算法来计算代数对偶的基础。设$C_1$和$C_2$为由标准单项式张成的线性码。我们给出了$C_1$与对偶$C_2^\perp$的单项式等价的组合条件。此外,我们给出了由指示函数系数描述的$C_2^\perp$的生成矩阵,其中包涵了$C_1$的发生矩阵。对于Reed-Muller型码,我们给出了一个基于消失理想的v数和Hilbert函数的对偶判据。应用上,我们提供了一个针对Gorenstein理想相应的Reed-Muller型码的明确对偶。此外,当评价码是单项式且评价点集为退化仿射空间时,我们将分类评价其对偶是否为单项式码。