Pre-trained large language models based on Transformers have demonstrated remarkable in-context learning (ICL) abilities. With just a few demonstration examples, the models can implement new tasks without any parameter updates. However, it is still an open question to understand the mechanism of ICL. In this paper, we attempt to explore the ICL process in Transformers through a lens of representation learning. Initially, leveraging kernel methods, we figure out a dual model for one softmax attention layer. The ICL inference process of the attention layer aligns with the training procedure of its dual model, generating token representation predictions that are equivalent to the dual model's test outputs. We delve into the training process of this dual model from a representation learning standpoint and further derive a generalization error bound related to the quantity of demonstration tokens. Subsequently, we extend our theoretical conclusions to more complicated scenarios, including one Transformer layer and multiple attention layers. Furthermore, drawing inspiration from existing representation learning methods especially contrastive learning, we propose potential modifications for the attention layer. Finally, experiments are designed to support our findings.
翻译:暂无翻译