We study a sound verification method for parametric component-based systems. The method uses a resource logic, a new formal specification language for distributed systems consisting of a finite yet unbounded number of components. The logic allows the description of architecture configurations coordinating instances of a finite number of types of components, by means of inductive definitions similar to the ones used to describe algebraic data types or recursive data structures. For parametric systems specified in this logic, we show that decision problems such as reaching deadlock or violating critical section are undecidable, in general. Despite this negative result, we provide for these decision problems practical semi-algorithms relying on the automatic synthesis of structural invariants allowing the proof of general safety properties. The invariants are defined using the WSkS fragment of the monadic second order logic, known to be decidable by a classical automata-logic connection, thus reducing a verification problem to checking satisfiability of a WSkS formula.
翻译:我们研究了一种对准元件基系统的合理核查方法。 这种方法使用一种资源逻辑, 一种新的分布式系统的正式规格语言, 由一定数量的组成部分组成。 该逻辑允许通过类似于描述代数数据类型或递归数据结构所使用的直线定义, 描述一些数量有限的部件类型的结构配置协调实例。 对于这一逻辑中指定的参数系统, 我们表明, 陷入僵局或违反关键部分等决定问题一般是不可改变的。 尽管这一负面结果, 我们还是为这些决定问题提供了实际的半数值, 依赖结构变异的自动合成, 以证明一般安全性。 变量的定义是使用蒙亚第二顺序逻辑的 WSkS 碎片来定义, 据古典的自动化数据- logical 连接可以辨别, 从而减少核查问题, 以检查 WSkS 公式的可比较性。