The learning process of classical machine learning algorithms is tuned by hyperparameters that need to be customized to best learn and generalize from an input dataset. In recent years, Quantum Machine Learning (QML) has been gaining traction as a possible application of quantum computing which may provide quantum advantage in the future. However, quantum versions of classical machine learning algorithms introduce a plethora of additional parameters and circuit variations that have their own intricacies in being tuned. In this work, we take the first steps towards Automated Quantum Machine Learning (AutoQML). We propose a concrete description of the problem, and then develop a classical-quantum hybrid cloud architecture that allows for parallelized hyperparameter exploration and model training. As an application use-case, we train a quantum Generative Adversarial neural Network (qGAN) to generate energy prices that follow a known historic data distribution. Such a QML model can be used for various applications in the energy economics sector.
翻译:古典机器学习算法(QML)的学习过程由需要定制的超参数调整,以便从输入数据集中最佳地学习和概括。近年来,量子机器学习(QML)作为量子计算的一种可能的应用,在将来可能提供量子优势,逐渐获得牵引。然而,古典机器学习算法的量子版本引入了大量额外的参数和电路变异,这些参数和变异在调整过程中具有自己的复杂性。在这项工作中,我们迈出了向自动量子机器学习(AutoQML)(AutoQML)迈出的第一步。我们提出了这一问题的具体描述,然后开发了一种古典-量子混合云层结构,允许平行的超参数探索和模型培训。作为一个应用案例,我们培训了量子基因自动神经网络(QGAN),以产生能源价格,遵循已知的历史数据分布。这种QML模型可用于能源经济部门的各种应用。