In text generation, models that generate text from scratch one token at a time are currently the dominant paradigm. Despite being performant, these models lack the ability to revise existing text, which limits their usability in many practical scenarios. We look to address this, with DiffusER (Diffusion via Edit-based Reconstruction), a new edit-based generative model for text based on denoising diffusion models -- a class of models that use a Markov chain of denoising steps to incrementally generate data. DiffusER is not only a strong generative model in general, rivalling autoregressive models on several tasks spanning machine translation, summarization, and style transfer; it can also perform other varieties of generation that standard autoregressive models are not well-suited for. For instance, we demonstrate that DiffusER makes it possible for a user to condition generation on a prototype, or an incomplete sequence, and continue revising based on previous edit steps.
翻译:在文本生成中,一次产生一纸空文的模型是当前占主导地位的范例。这些模型尽管表现良好,但缺乏修改现有文本的能力,从而在许多实际情景中限制了其可用性。我们期待通过DiffusER(通过基于编辑的重建进行传播)来解决这个问题。DiffusER(通过基于编辑的重建进行传播)是一个新的基于编辑的基于基因的文本模型,它基于分解的传播模型 -- -- 一种使用Markov分解步骤链来逐步生成数据的模型类别。DiffusER(DiffusER)不仅总体上是一个强有力的基因化模型,在跨越机器翻译、合成和样式传输的若干任务中,与自动反向模型相对立;它也可以使用其他种类的标准自动反向模型不适合。例如,我们证明DiffusER(DiffusER)使用户有可能以原型或不完整的序列为生成条件,并继续根据先前的编辑步骤进行修改。