Traffic accident recognition is essential in developing automated driving and Advanced Driving Assistant System technologies.A large dataset of annotated traffic accidents is necessary to improve the accuracy of traffic accident recognition using deep learning models.Conventional traffic accident datasets provide annotations on the presence or absence of traffic accidents and other teacher labels, improving traffic accident recognition performance. Therefore, we propose V-TIDB, a large-scale traffic accident recognition dataset annotated with various environmental information as multi-labels. Our proposed dataset aims to improve the performance of traffic accident recognition by annotating ten types of environmental information in addition to the presence or absence of traffic accidents. V-TIDB is constructed by collecting many videos from the Internet and annotating them with appropriate environmental information.In our experiments, we compare the performance of traffic accident recognition when only labels related to the presence or absence of traffic accidents are trained and when environmental information is added as a multi-label. In the second experiment, we compare the performance of the training with only contact level which represents the severity of the traffic accident, and the performance with environmental information added as a multi-label.The results showed that 6 out of 10 environmental information labels improved the performance of recognizing the presence or absence of traffic accidents. In the experiment on the degree of recognition of traffic accidents, the performance of recognition of car wrecks and contacts was improved for all environmental information. These experiments show that V-TIDB can be used to learn traffic accident recognition models that take environmental information into account in detail and can be used for appropriate traffic accident analysis.
翻译:暂无翻译