Heatmap regression has become the mainstream methodology for deep learning-based semantic landmark localization, including in facial landmark localization and human pose estimation. Though heatmap regression is robust to large variations in pose, illumination, and occlusion in unconstrained settings, it usually suffers from a sub-pixel localization problem. Specifically, considering that the activation point indices in heatmaps are always integers, quantization error thus appears when using heatmaps as the representation of numerical coordinates. Previous methods to overcome the sub-pixel localization problem usually rely on high-resolution heatmaps. As a result, there is always a trade-off between achieving localization accuracy and computational cost, where the computational complexity of heatmap regression depends on the heatmap resolution in a quadratic manner. In this paper, we formally analyze the quantization error of vanilla heatmap regression and propose a simple yet effective quantization system to address the sub-pixel localization problem. The proposed quantization system induced by the randomized rounding operation 1) encodes the fractional part of numerical coordinates into the ground truth heatmap using a probabilistic approach during training; and 2) decodes the predicted numerical coordinates from a set of activation points during testing. We prove that the proposed quantization system for heatmap regression is unbiased and lossless. Experimental results on popular facial landmark localization datasets (WFLW, 300W, COFW, and AFLW) and human pose estimation datasets (MPII and COCO) demonstrate the effectiveness of the proposed method for efficient and accurate semantic landmark localization. Code is available at http://github.com/baoshengyu/H3R.


翻译:热映射回归已成为基于深学习的语义地标本地化的主流方法。 包括面部标志性局部化和人造图 。 虽然热映射回归对于在未受限制的环境下形成、 照明和封隔方面的巨大变异具有很强的作用, 但它通常会受到亚像素本地化问题的影响。 具体来说, 考虑到热映射中的激活点指数总是整数, 因此当使用热映射作为数字坐标的表示方式时, 就会出现量化错误。 克服次像素本地化估算问题之前的方法通常依赖于高分辨率的热映射。 因此, 实现本地化、 照明和计算成本之间总是存在着一种权衡。 热映射回归的计算复杂性取决于以二次方位方式的热映射分辨率解析。 在本文中, 我们正式分析Vanilla 热映射回归的振荡错误, 并提议一个简单而有效的四分化系统来解决本地级化问题( 由随机环化的硬化的硬化系统引发的), 将部分的硬化和计算结果解解解解剖面体的系统, 将预变化系统 和预变化的数值解数据化法 测试期间, 我们的数值解的数值解的数值解解数据解数据解解解解的系统将数据解解解解解解到地面的系统将数据解解解成为数据解解。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
专知会员服务
82+阅读 · 2020年5月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【泡泡一分钟】多尺度优化的CNN目标检测算法(ICCV2017-55)
泡泡机器人SLAM
8+阅读 · 2018年7月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年10月17日
Arxiv
0+阅读 · 2021年10月16日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【泡泡一分钟】多尺度优化的CNN目标检测算法(ICCV2017-55)
泡泡机器人SLAM
8+阅读 · 2018年7月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
Top
微信扫码咨询专知VIP会员