In this paper we propose and study a version of the Dyadic Classification and Regression Trees (DCART) estimator from Donoho (1997) for (fixed design) quantile regression in general dimensions. We refer to this proposed estimator as the QDCART estimator. Just like the mean regression version, we show that a) a fast dynamic programming based algorithm with computational complexity $O(N \log N)$ exists for computing the QDCART estimator and b) an oracle risk bound (trading off squared error and a complexity parameter of the true signal) holds for the QDCART estimator. This oracle risk bound then allows us to demonstrate that the QDCART estimator enjoys adaptively rate optimal estimation guarantees for piecewise constant and bounded variation function classes. In contrast to existing results for the DCART estimator which requires subgaussianity of the error distribution, for our estimation guarantees to hold we do not need any restrictive tail decay assumptions on the error distribution. For instance, our results hold even when the error distribution has no first moment such as the Cauchy distribution. Apart from the Dyadic CART method, we also consider other variant methods such as the Optimal Regression Tree (ORT) estimator introduced in Chatterjee and Goswami (2019). In particular, we also extend the ORT estimator to the quantile setting and establish that it enjoys analogous guarantees. Thus, this paper extends the scope of these globally optimal regression tree based methodologies to be applicable for heavy tailed data. We then perform extensive numerical experiments on both simulated and real data which illustrate the usefulness of the proposed methods.
翻译:本文中我们提议并研究 Dyadic 分类和回归树( DCART) 的版本, 该版本来自 Donoho (1997) 用于( 固定设计) 总尺寸的量化回归 。 我们将这个拟议的估算器称为 QDCART 估计器 。 和 平均回归器一样, 我们显示 a) 基于计算复杂性$O( N\log N) 的快速动态编程算法, 用于计算 QDCART 估测器和 b) 一种或角值风险约束( 交易平方错误和真实信号的复杂参数), 用于 QDCART 估测器 。 这个或角值风险约束让我们能够证明 QDCART 的估算器 以适应性的方式将最佳估算保证用于 折叠不变和捆绑的变函数类别。 与 DCART 估测仪的现有结果相比, 我们的估算保证不需要在错误分布上存在任何限制性的尾渣度假设。 例如, 我们的计算结果, 即使在应用应用应用 ODA or Real ro deal la deal 方法时, la deval la deval la la latistr lax lade lade lax the the the s the s the swequest the s