In this paper we propose and study a version of the Dyadic Classification and Regression Trees (DCART) estimator from Donoho (1997) for (fixed design) quantile regression in general dimensions. We refer to this proposed estimator as the QDCART estimator. Just like the mean regression version, we show that a) a fast dynamic programming based algorithm with computational complexity $O(N \log N)$ exists for computing the QDCART estimator and b) an oracle risk bound (trading off squared error and a complexity parameter of the true signal) holds for the QDCART estimator. This oracle risk bound then allows us to demonstrate that the QDCART estimator enjoys adaptively rate optimal estimation guarantees for piecewise constant and bounded variation function classes. In contrast to existing results for the DCART estimator which requires subgaussianity of the error distribution, for our estimation guarantees to hold we do not need any restrictive tail decay assumptions on the error distribution. For instance, our results hold even when the error distribution has no first moment such as the Cauchy distribution. Apart from the Dyadic CART method, we also consider other variant methods such as the Optimal Regression Tree (ORT) estimator introduced in Chatterjee and Goswami (2019). In particular, we also extend the ORT estimator to the quantile setting and establish that it enjoys analogous guarantees. Thus, this paper extends the scope of these globally optimal regression tree based methodologies to be applicable for heavy tailed data. We then perform extensive numerical experiments on both simulated and real data which illustrate the usefulness of the proposed methods.


翻译:本文中我们提议并研究 Dyadic 分类和回归树( DCART) 的版本, 该版本来自 Donoho (1997) 用于( 固定设计) 总尺寸的量化回归 。 我们将这个拟议的估算器称为 QDCART 估计器 。 和 平均回归器一样, 我们显示 a) 基于计算复杂性$O( N\log N) 的快速动态编程算法, 用于计算 QDCART 估测器和 b) 一种或角值风险约束( 交易平方错误和真实信号的复杂参数), 用于 QDCART 估测器 。 这个或角值风险约束让我们能够证明 QDCART 的估算器 以适应性的方式将最佳估算保证用于 折叠不变和捆绑的变函数类别。 与 DCART 估测仪的现有结果相比, 我们的估算保证不需要在错误分布上存在任何限制性的尾渣度假设。 例如, 我们的计算结果, 即使在应用应用应用 ODA or Real ro deal la deal 方法时, la deval la deval la la latistr lax lade lade lax the the the s the s the swequest the s

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
已删除
生物探索
3+阅读 · 2018年2月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月14日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
已删除
生物探索
3+阅读 · 2018年2月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员