We study the estimation problem for linear time-invariant (LTI) state-space models with Gaussian excitation of an unknown covariance. We provide non asymptotic lower bounds for the expected estimation error and the mean square estimation risk of the least square estimator, and the minimax mean square estimation risk. These bounds are sharp with explicit constants when the matrix of the dynamics has no eigenvalues on the unit circle and are rate-optimal when they do. Our results extend and improve existing lower bounds to lower bounds in expectation of the mean square estimation risk and to systems with a general noise covariance. Instrumental to our derivation are new concentration results for rescaled sample covariances and deviation results for the corresponding multiplication processes of the covariates, a differential geometric construction of a prior on the unit operator ball of small Fisher information, and an extension of the Cram\'er-Rao and van Treesinequalities to matrix-valued estimators.
翻译:我们研究线性时差(LTI)状态空间模型的估计问题,使用Gaussian 引出未知的共差。 我们为预期的估计误差和最小正方估量器的平均平方估计风险以及最小负平方估计风险提供了非非零度下限的下限。 当动态矩阵在单位圆上没有单数值时,这些误差与明确的常数是尖锐的。 我们的结果扩大并改进了现有的较低界限,降低界限,以预测平均平方估计风险和一般噪声共差系统。 我们的衍生工具是重新标定的样变差和最小正平差结果的共差相应倍增过程的新的集中结果,在小型渔业信息单位操作球上对先前的差分几何构造,以及将Cram\'er-Rao和van树本等扩大至基估定值的估量器。