This paper discusses the statistical inference problem associated with testing for dependence between two continuous random variables using Kendall's $\tau$ in the context of the missing data problem. We prove the worst-case identified set for this measure of association always includes zero. The consequence of this result is that robust inference for dependence using Kendall's $\tau$, where robustness is with respect to the form of the missingness-generating process, is impossible.
翻译:本文件讨论两个连续随机变量之间在缺少数据问题时使用Kendall$\tau美元进行依赖性测试的统计推论问题。 我们证明,为这种关联度确定的最坏情况总是包括零。 结果是,使用Kendall$\tau美元进行依赖性可靠推论是不可能的,因为这种推论是针对缺失生成过程的形式的。