Lung cancer is the leading cause of mortality from cancer worldwide and has various histologic types, among which Lung Adenocarcinoma (LUAC) has recently been the most prevalent. Lung adenocarcinomas are classified as pre invasive, minimally invasive, and invasive adenocarcinomas. Timely and accurate knowledge of the invasiveness of lung nodules leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries. Currently, the primary imaging modality to assess and predict the invasiveness of LUACs is the chest CT. The results based on CT images, however, are subjective and suffer from a low accuracy compared to the ground truth pathological reviews provided after surgical resections. In this paper, a predictive transformer-based framework, referred to as the "CAE-Transformer", is developed to classify LUACs. The CAE-Transformer utilizes a Convolutional Auto-Encoder (CAE) to automatically extract informative features from CT slices, which are then fed to a modified transformer model to capture global inter-slice relations. Experimental results on our in-house dataset of 114 pathologically proven Sub Solid Nodules (SSNs) demonstrate the superiority of the CAE-Transformer over the histogram/radiomics-based models and its deep learning-based counterparts, achieving an accuracy of 87.73%, sensitivity of 88.67%, specificity of 86.33%, and AUC of 0.913, using a 10-fold cross-validation.
翻译:肺癌是造成全世界癌症死亡的主要原因,并且有各种历史原因,其中,肺腺癌(LUAC)最近最为流行。肺癌被归类为前侵入性、最低侵入性和侵入性肾癌。及时准确地了解肺结核的侵入性导致适当的治疗计划,并减少不必要的或晚期手术的风险。目前,评估和预测肺癌侵入性的主要成像模式是胸腔CT。但是,基于CT图像的结果是主观的,与外科剖析后提供的地面真相交叉审查相比,其敏感性较低。在本文件中,以预测性变异器为基础的框架,称为“CAE-变异器”,用于对肺癌进行分类。CAE-变异器利用一个革命性自动和晚期手术器(CAEE),以自动提取基于LUAC切片的信息特征,然后将其输入一个经过修改的变异器模型,以捕捉到全球的阴部间关系。在这个文件中,以预测以预测性变异器为基础的变异性框架(S-CARC-C-CA-C-CA-C-C-C-CLA-C-C-C-C-C-CLisal-CA-C-C-C-C-CLisal-C-C-CRis-C-ILis-C-C-I-C-C-C-C-C-CA-CA-I-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-ILisal-C-C-C-ILisal-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-I-I-I-I-I-I-IL-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-