Multi-types of user behavior data (e.g., clicking, adding to cart, and purchasing) are recorded in most real-world recommendation scenarios, which can help to learn users' multi-faceted preferences. However, it is challenging to explore multi-behavior data due to the unbalanced data distribution and sparse target behavior, which lead to the inadequate modeling of high-order relations when treating multi-behavior data ''as features'' and gradient conflict in multitask learning when treating multi-behavior data ''as labels''. In this paper, we propose CIGF, a Compressed Interaction Graph based Framework, to overcome the above limitations. Specifically, we design a novel Compressed Interaction Graph Convolution Network (CIGCN) to model instance-level high-order relations explicitly. To alleviate the potential gradient conflict when treating multi-behavior data ''as labels'', we propose a Multi-Expert with Separate Input (MESI) network with separate input on the top of CIGCN for multi-task learning. Comprehensive experiments on three large-scale real-world datasets demonstrate the superiority of CIGF. Ablation studies and in-depth analysis further validate the effectiveness of our proposed model in capturing high-order relations and alleviating gradient conflict. The source code and datasets are available at https://github.com/MC-CV/CIGF.
翻译:用户行为数据多类型(如点击、加车和购买)记录在大多数现实世界建议情景中,有助于学习用户的多面偏好,然而,由于数据分布不平衡和目标行为稀少,探索多种行为数据是很困难的,因为数据分布不平衡和目标行为稀少,导致在处理多行为数据“作为特征”和多任务学习中高层次关系模型化不足,在处理多行为数据时,处理多行为数据“作为标签”时,在多任务学习中,多任务学习中,多任务数据“作为标签”时,我们建议使用基于多重任务学习的压缩互动图表框架(CIGF)来克服上述限制。具体地说,我们设计了一个新的压缩互动图表网络(CIGCN),以模拟高层次关系。在处理多行为数据“作为标签”时,为了减轻潜在的梯度冲突冲突冲突模式(MESI)网络,并在CIGCN顶端单独提供投入,以克服以上多种任务学习。在三个大型实体/世界深度数据库中进行综合实验,在ABGFA-GF高层次上进一步分析。</s>