Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements to gain a quadratic speedup in computation time and quickly process large datasets. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. We demonstrate the advantages of our methods by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our approach is exceptionally robust to noise via a complementary error mitigation scheme. Using currently available quantum computers, the MNIST database can be processed within 220 hours instead of 10 years which opens up industrial applications of quantum machine learning.
翻译:量子计算机承诺加强实际应用的机器学习。 量子计算机学习真实世界数据必须处理大量的高维数据。 然而, 测量量子内核的常规方法对于大型数据集与数据集大小的平方大小相比是不切实际的。 在这里, 我们测量量子内核时使用随机测量方法, 以获得计算时间的二次加速和快速处理大型数据集。 此外, 我们有效地将高维数据编码为量子计算机, 其特征为量子计算机与电路深度线性缩放的特征数量。 编码的特征是量子渔业信息量度, 与辐射基函数内核相关。 我们通过对图像进行分类来展示我们的方法的优点。 为了进一步加快速度, 我们在不同量子计算机之间分配量子计算任务。 我们的方法通过一个互补的减少误差计划对噪音非常有力。 使用现有的量子计算机, MNIST数据库可以在220小时内处理, 而不是在10年内开始量子机器的工业应用。