Backdoor attacks are a major concern in federated learning (FL) pipelines where training data is sourced from untrusted clients over long periods of time (i.e., continual learning). Preventing such attacks is difficult because defenders in FL do not have access to raw training data. Moreover, in a phenomenon we call backdoor leakage, models trained continuously eventually suffer from backdoors due to cumulative errors in backdoor defense mechanisms. We propose a novel framework for defending against backdoor attacks in the federated continual learning setting. Our framework trains two models in parallel: a backbone model and a shadow model. The backbone is trained without any defense mechanism to obtain good performance on the main task. The shadow model combines recent ideas from robust covariance estimation-based filters with early-stopping to control the attack success rate even as the data distribution changes. We provide theoretical motivation for this design and show experimentally that our framework significantly improves upon existing defenses against backdoor attacks.


翻译:后门攻击是联邦学习(FL)管道中的一个主要问题,在后门攻击中,培训数据来自长期得不到信任的客户(即持续学习)。防止这种攻击是困难的,因为FL的维护者无法获得原始培训数据。此外,在我们称之为后门泄漏的现象中,受过训练的模型最终会因为后门防御机制的累积错误而成为后门攻击的对象。我们提出了一个在联邦不断学习的环境下防御后门攻击的新框架。我们的框架平行地培训了两个模型:一个主干模型和一个影子模型。骨干在没有任何防御机制的情况下接受了培训,以取得主要任务的良好表现。影子模型将来自强有力的共变估计过滤器的最新想法与早期停止控制攻击成功率相结合,即使数据分配的变化也是如此。我们为这一设计提供了理论动机,并实验性地表明我们的框架大大改进了现有的对后门攻击的防御。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Defense Against Multi-target Trojan Attacks
Arxiv
0+阅读 · 2022年7月8日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员