In this paper, we consider a model reduction technique for stabilizable and detectable stochastic systems. It is based on a pair of Gramians that we analyze in terms of well-posedness. Subsequently, dominant subspaces of the stochastic systems are identified exploiting these Gramians. An associated balancing related scheme is proposed that removes unimportant information from the stochastic dynamics in order to obtain a reduced system. We show that this reduced model preserves important features like stabilizability and detectability. Additionally, a comprehensive error analysis based on eigenvalues of the Gramian pair product is conducted. This provides an a-priori criterion for the reduction quality which we illustrate in numerical experiments.
翻译:本文研究了一种适用于稳定且可检测随机系统的模型简化技术。该技术基于一对格拉米矩阵,我们从完备性的角度进行了分析。随后,利用这些格拉米矩阵确定随机系统的主要子空间。提出了一种相关平衡方案,该方案从随机动力学中删除不重要的信息以获得简化的系统。我们展示了这个简化后的模型保留了如稳定性和可检测性这样的重要特征。此外,我们进行了基于格拉米矩阵对乘积的特征值的综合误差分析。这提供了一个先验准则,可用于说明简化质量。我们在数值实验中加以说明。