We consider the problem of learning a sparse undirected graph underlying a given set of multivariate data. We focus on graph Laplacian-related constraints on the sparse precision matrix that encodes conditional dependence between the random variables associated with the graph nodes. Under these constraints the off-diagonal elements of the precision matrix are non-positive (total positivity), and the precision matrix may not be full-rank. We investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure. The graph Laplacian can then be extracted from the off-diagonal precision matrix. An alternating direction method of multipliers (ADMM) algorithm is presented and analyzed for constrained optimization under Laplacian-related constraints and lasso as well as adaptive lasso penalties. Numerical results based on synthetic data show that the proposed constrained adaptive lasso approach significantly outperforms existing Laplacian-based approaches. We also evaluate our approach on real financial data.
翻译:我们考虑的是,在特定一组多变量数据中学习一个稀少的无方向图形的问题。 我们侧重于与图表 Laplacian 相关的限制, 即对与图形节点相关的随机变量之间的有条件依赖性进行编码的稀少精密矩阵。 在这些限制下,精确矩阵的离对角元素是非阳性( 完全假设性), 精确矩阵可能不是全位的。 我们调查了对广泛使用的、 受处罚的日志相似性方法的修改, 以强制实施完全正比性, 而不是拉placian 结构。 然后, 图表 Laplacian 可以从离对角精确矩阵中提取。 在与拉普利亚相关的制约和 lasso 以及适应性 lasso 惩罚下, 呈现并分析一种交替方向的乘数算法方法, 以限制优化 。 根据合成数据得出的数值结果显示, 拟议的受约束的拉索法方法大大优于现有的Laplacian 方法。 我们还评估了我们在真实金融数据上采用的方法 。