The graph coloring problem (GCP) is one of the most studied NP-HARD problems in computer science. Given a graph , the task is to assign a color to all vertices such that no vertices sharing an edge receive the same color and that the number of used colors, is minimal. Different heuristic, meta-heuristic, machine learning and hybrid solution methods have been applied to obtain the solution. To solve this problem we use mutation of evolutionary algorithm. For this purpose we introduce binary encoding for Graph Coloring Problem. This binary encoding help us for mutation, evaluate, immune system and merge color easily and also reduce coloring dynamically. In the traditional evolutionary algorithm (EA) for graph coloring, k-coloring approach is used and the EA is run repeatedly until the lowest possible is reached. In our paper, we start with the theoretical upper bound of chromatic number, that is, maximum out-degree + 1 and in the process of evolution some of the colors are made unused to dynamically reduce the number of color in every generation. We test few standard DIMACS benchmark and compare resent paper. Maximum results are same as expected chromatic color and few data sets are larger than expected chromatic number


翻译:图形颜色问题( GCP) 是计算机科学中研究最多的 NP- HARD 问题之一 。 在图形中, 任务在于给所有脊椎指定一种颜色, 这样, 共享边缘的脊椎不会得到相同的颜色, 并且使用过的颜色的数量极小。 不同的恒温、 超湿性、 机器学习和混合解决方案方法已经应用到不同的湿性、 超湿性、 机器学习和混合方法来获得解决方案 。 为了解决这个问题, 我们使用了进化算法的突变 。 为此, 我们引入了图形颜色问题的二进制编码。 这个二进制编码可以帮助我们很容易地突变、 评估、 免疫系统、 合并颜色, 同时动态地减少颜色 。 在传统的演化算算算法( EA) 中, 使用 K- 彩色方法, 并反复运行到尽可能低的颜色 。 在我们的纸张中, 我们从染色数的理论上限开始, 也就是说, 最大度+ 1 和进化过程中, 有些颜色被用过, 动态地减少每一代的颜色数量。 我们测试了少数标准的 DIMAC 基准, 和比较最大的颜色结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员