Learning graphs from sets of nodal observations represents a prominent problem formally known as graph topology inference. However, current approaches are limited by typically focusing on inferring single networks, and they assume that observations from all nodes are available. First, many contemporary setups involve multiple related networks, and second, it is often the case that only a subset of nodes is observed while the rest remain hidden. Motivated by these facts, we introduce a joint graph topology inference method that models the influence of the hidden variables. Under the assumptions that the observed signals are stationary on the sought graphs and the graphs are closely related, the joint estimation of multiple networks allows us to exploit such relationships to improve the quality of the learned graphs. Moreover, we confront the challenging problem of modeling the influence of the hidden nodes to minimize their detrimental effect. To obtain an amenable approach, we take advantage of the particular structure of the setup at hand and leverage the similarity between the different graphs, which affects both the observed and the hidden nodes. To test the proposed method, numerical simulations over synthetic and real-world graphs are provided.


翻译:从各节点观测中得出的学习图表是一个突出的问题,被正式称为图形表层推断。然而,目前的方法是有限的,通常侧重于推断单一网络,它们假定所有节点都有观测结果。第一,许多当代设置涉及多个相关网络,第二,经常的情况是,只观察到一组节点,而其余的则仍然隐藏着。受这些事实的驱使,我们采用了一种联合图表表层推断方法,以模拟隐藏变量的影响。根据所观测到的信号是固定在所寻求的图表上的假设,并且图表是密切相关的,对多个网络的联合估计使我们能够利用这种关系来提高所学图的质量。此外,我们面对一个具有挑战性的问题,即模拟隐藏节点的影响,以尽量减少其有害影响。为了获得适用的方法,我们利用手边设置的特定结构,利用不同图表之间的相似性,这既影响观测到的,也影响隐藏的节点。为了测试拟议的方法,提供了合成和真实世界图表的数字模拟。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员