In this report, we relate the algorithmic design of Barlow Twins' method to the Hilbert-Schmidt Independence Criterion (HSIC), thus establishing it as a contrastive learning approach that is free of negative samples. Through this perspective, we argue that Barlow Twins (and thus the class of negative-sample-free contrastive learning methods) suggests a possibility to bridge the two major families of self-supervised learning philosophies: non-contrastive and contrastive approaches. In particular, Barlow twins exemplified how we could combine the best practices of both worlds: avoiding the need of large training batch size and negative sample pairing (like non-contrastive methods) and avoiding symmetry-breaking network designs (like contrastive methods).
翻译:在本报告中,我们将Barlow Twins方法的算法设计与Hilbert-Schmidt独立标准(HSIC)联系起来,从而将它确定为一种没有负面样本的对比式学习方法。 通过这一角度,我们认为,Barlow Twins(以及因此的无负面抽样对比式学习方法)提出了一种可能性,可以将自我监督学习哲学的两大家族连接起来:非互动性和对比性方法。 特别是,Barlow双胞胎举例说明了我们如何将两个世界的最佳做法结合起来:避免大型培训批量和负抽样配对(类似非互动方法 ), 避免对称破碎网络设计(类似对比方法 ) 。