We consider the feedback capacity of a MIMO channel whose channel output is given by a linear state-space model driven by the channel inputs and a Gaussian process. The generality of our state-space model subsumes all previous studied models such as additive channels with colored Gaussian noise, and channels with an arbitrary dependence on previous channel inputs or outputs. The main result is a computable feedback capacity expression that is given as a convex optimization problem subject to a detectability condition. We demonstrate the capacity result on the auto-regressive Gaussian noise channel, where we show that even a single time-instance delay in the feedback reduces the feedback capacity significantly in the stationary regime. On the other hand, for large regression parameters (in the non-stationary regime), the feedback capacity can be approached with delayed feedback. Finally, we show that the detectability condition is satisfied for scalar models and conjecture that it is true for MIMO models.
翻译:我们考虑的是由频道输入和高斯进程驱动的直线状态空间模型提供频道输出的MIMO频道的反馈能力。 我们的州空间模型的通用性囊括了以前研究过的所有模型,如有色高斯噪音的添加渠道,以及任意依赖先前频道输入或输出的频道。主要结果是一个可计算反馈能力表达方式,作为受可探测性条件制约的曲线优化问题提供。我们展示了自动递减高斯噪音频道的能力结果,我们在该频道中显示,即使一次时间延迟反馈也会大大降低固定系统中的反馈能力。另一方面,对于大型回归参数(非静止系统),反馈能力可以用延迟的反馈来接近。最后,我们表明,可探测性条件满足了可探测性模型和直射线对MIMO模型的正确性。