We introduce a sequential reinforcement learning framework for imitation learning designed to model heterogeneous cognitive strategies in pollinators. Focusing on honeybees, our approach leverages trajectory similarity to capture and forecast behavior across individuals that rely on distinct strategies: some exploiting numerical cues, others drawing on memory, or being influenced by environmental factors such as weather. Through empirical evaluation, we show that state-of-the-art imitation learning methods often fail in this setting: when expert policies shift across memory windows or deviate from optimality, these models overlook both fast and slow learning behaviors and cannot faithfully reproduce key decision patterns. Moreover, they offer limited interpretability, hindering biological insight. Our contribution addresses these challenges by (i) introducing a model that minimizes predictive loss while identifying the effective memory horizon most consistent with behavioral data, and (ii) ensuring full interpretability to enable biologists to analyze underlying decision-making strategies and finally (iii) providing a mathematical framework linking bee policy search with bandit formulations under varying exploration-exploitation dynamics, and releasing a novel dataset of 80 tracked bees observed under diverse weather conditions. This benchmark facilitates research on pollinator cognition and supports ecological governance by improving simulations of insect behavior in agroecosystems. Our findings shed new light on the learning strategies and memory interplay shaping pollinator decision-making.
翻译:暂无翻译