Observed events in recommendation are consequence of the decisions made by a policy, thus they are usually selectively labeled, namely the data are Missing Not At Random (MNAR), which often causes large bias to the estimate of true outcomes risk. A general approach to correct MNAR bias is performing small Randomized Controlled Trials (RCTs), where an additional uniform policy is employed to randomly assign items to each user. In this work, we concentrate on the fairness of RCTs under both homogeneous and heterogeneous demographics, especially analyzing the bias for the least favorable group on the latter setting. Considering RCTs' limitations, we propose a novel Counterfactual Robust Risk Minimization (CRRM) framework, which is totally free of expensive RCTs, and derive its theoretical generalization error bound. At last, empirical experiments are performed on synthetic tasks and real-world data sets, substantiating our method's superiority both in fairness and generalization.


翻译:建议中观察到的事件是政策决定的结果,因此通常被选择性地标为数据失踪不是随机数据(MNAR),这往往对真实结果风险的估计产生很大的偏差。纠正 MNAR偏差的一般做法是小型随机控制试验,采用新的统一政策随机地向每个用户分配项目。在这项工作中,我们集中关注在单一和不同人口结构下RCT的公平性,特别是分析在后一种情况下对最不利群体的偏差。考虑到RCT的局限性,我们提出一个新的反事实强风险最小化框架(CRRM),完全没有昂贵的RCT,并得出其理论上的笼统错误。最后,在合成任务和真实世界数据集上进行了实验,证明了我们的方法在公平和概括方面优势。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员