Leonid Levin (arxiv.org/abs/cs/0503039v14, p.7) published a new (and very nice) proof of G\'acs-Ku\v{c}era's theorem that occupies only a few lines when presented in his style. We try to explain more details and discuss the connection of this proof with image randomness theorems, making explicit some result (see Proposition 4) that is implicit in Levin's exposition. Then we review the previous work about the oracle use when reducing a given sequence to another one, and its connection with algorithmic dimension theory.
翻译:Levin (arxiv.org/abs/cs/ 0503039v14, p.7) 公布了一份新的(和非常好的)G\'acs-Ku\v{c}era的理论证明, 当以他的风格显示时, 它只占据了几行线。 我们试图解释更多细节, 讨论这一证据与图像随机性理论的联系, 得出Levin的演示文中隐含的明显结果( Proposition 4) 。 然后我们审视了先前在将给定序列降为另一个序列时使用的神器用途及其与算法维度理论的联系。