Robotic deformable-object manipulation is a challenge in the robotic industry because deformable objects have complicated and various object states. Predicting those object states and updating manipulation planning are time-consuming and computationally expensive. In this paper, we propose an effective robotic manipulation approach for recognising 'known configurations' of garments with a 'Known Configuration neural Network' (KCNet) and choosing pre-designed manipulation plans based on the recognised known configurations. Our robotic manipulation plan features a four-action strategy: finding two critical grasping points, stretching the garments, and lifting down the garments. We demonstrate that our approach only needs 98 seconds on average to flatten garments of five categories.
翻译:机器人变形物体的操纵是机器人工业的一个挑战,因为变形物体复杂且有不同的物体状态。 预测这些物体状态和更新操纵计划耗时费时且计算成本昂贵。 在本文中,我们提出一个有效的机器人操纵方法,以识别“ 知识配置神经网络” (KCNet) 服装的已知配置,并根据公认的已知配置来选择预先设计的操纵计划。 我们的机器人操纵计划有四个行动策略: 找到两个关键的捕捉点, 穿衣, 以及脱掉服装。 我们证明我们的方法平均只需要98秒就可以平整五类服装。