In bandit with distribution shifts, one aims to automatically adapt to unknown changes in reward distribution, and restart exploration when necessary. While this problem has been studied for many years, a recent breakthrough of Auer et al. (2018, 2019) provides the first adaptive procedure to guarantee an optimal (dynamic) regret $\sqrt{LT}$, for $T$ rounds, and an unknown number $L$ of changes. However, while this rate is tight in the worst case, it remained open whether faster rates are possible, without prior knowledge, if few changes in distribution are actually severe. To resolve this question, we propose a new notion of significant shift, which only counts very severe changes that clearly necessitate a restart: roughly, these are changes involving not only best arm switches, but also involving large aggregate differences in reward overtime. Thus, our resulting procedure adaptively achieves rates always faster (sometimes significantly) than $O(\sqrt{ST})$, where $S\ll L$ only counts best arm switches, while at the same time, always faster than the optimal $O(V^{\frac{1}{3}}T^{\frac{2}{3}})$ when expressed in terms of total variation $V$ (which aggregates differences overtime). Our results are expressed in enough generality to also capture non-stochastic adversarial settings.


翻译:虽然这个问题已经研究多年,但最近Auer等人(2018年,2019年)的突破提供了第一个适应性程序,可以保证最优(动力)遗憾$@sqrt{LT}美元($T$)和变化的金额($O(sqrt{LT}),尽管在最坏的情况下,这一利率比较紧,但是,如果分配的变动实际上很少发生严重,那么在不事先知道的情况下,能否实现更快的费率,以及必要时重新开始勘探。为了解决这个问题,我们提出了一个重大转变的新概念,它只计得非常严重的变化,显然需要重新启动:这些变化不仅涉及最好的手臂开关,而且还涉及报酬加班方面的巨大总体差异。因此,我们由此产生的程序所实现的利率总是比美元(sqrt{L}$(sqrt{ST})高($llL$)总是比美元(sllL$)只算最佳的手臂开关,而与此同时,在一般情况下,我们表示的非加班费差异时,总是比美元($=======总差额)。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
0+阅读 · 2022年8月3日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员