Class-imbalance is a common problem in machine learning practice. Typical Imbalanced Learning (IL) methods balance the data via intuitive class-wise resampling or reweighting. However, previous studies suggest that beyond class-imbalance, intrinsic data difficulty factors like overlapping, noise, and small disjuncts also play critical roles. To handle them, many solutions have been proposed (e.g., noise removal, borderline sampling, hard example mining) but are still confined to a specific factor and cannot generalize to broader scenarios, which raises an interesting question: how to handle both class-agnostic difficulties and the class-imbalance in a unified way? To answer this, we consider both class-imbalance and its orthogonal: intra-class imbalance, i.e., the imbalanced distribution over easy and hard samples. Such distribution naturally reflects the complex influence of class-agnostic intrinsic data difficulties thus providing a new unified view for identifying and handling these factors during learning. From this perspective, we discuss the pros and cons of existing IL solutions and further propose new balancing techniques for more robust and efficient IL. Finally, we wrap up all solutions into a generic ensemble IL framework, namely DuBE (Duple-Balanced Ensemble). It features explicit and efficient inter-\&intra-class balancing as well as easy extension with standardized APIs. Extensive experiments validate the effectiveness of DuBE. Code, examples, and documentation are available at https://github.com/AnonAuthorAI/duplebalance and https://duplebalance.readthedocs.io.


翻译:分类平衡是机器学习实践中常见的一个问题。 典型的平衡学习( IL) 方法通过直观的类比再抽样或重新加权来平衡数据。 但是, 先前的研究显示, 除了阶级平衡之外, 内在的数据困难因素, 如重叠、 噪音和小型脱节也起着关键作用 。 要处理它们, 已经提出了许多解决方案( 例如, 清除噪音、 边际抽样、 硬例采矿 ), 但仍然局限于一个特定因素, 无法概括到更广泛的情景中, 这就提出了一个有趣的问题: 如何通过统一的方式处理阶级间困难和阶级平衡? 为了回答这一点, 我们考虑阶级平衡及其或分层的内在数据困难因素: 阶级内部不平衡, 即: 简单和硬样本的分布不均匀。 这种分布自然反映了阶级间内在数据困难的复杂影响, 从而在学习过程中为识别和处理这些因素提供新的统一观点。 从这个角度, 我们讨论现有的IL解决方案的准和组合, 进一步提出新的平衡技术, 即, 稳定/ 透明 常规的版本 。 最后, 我们将I- dalalalalalalalalalalalalalalalalalalalalal A.

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年11月8日
Arxiv
32+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2020年8月3日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员