We consider multivariate centered Gaussian models for the random variable $Z=(Z_1,\ldots, Z_p)$, invariant under the action of a subgroup of the group of permutations on $\{1,\ldots, p\}$. Using the representation theory of the symmetric group on the field of reals, we derive the distribution of the maximum likelihood estimate of the covariance parameter $\Sigma$ and also the analytic expression of the normalizing constant of the Diaconis-Ylvisaker conjugate prior for the precision parameter $K=\Sigma^{-1}$. We can thus perform Bayesian model selection in the class of complete Gaussian models invariant by the action of a subgroup of the symmetric group, which we could also call complete RCOP models. We illustrate our results with a toy example of dimension $4$ and several examples for selection within cyclic groups, including a high dimensional example with $p=100$.


翻译:我们考虑的是随机变量$( ⁇ 1,\ldots, ⁇ p) 的多变量核心高斯模型, 由一组变数分组在 $1,\ldots, p ⁇ 1 的动作下进行。 使用对称组在实数领域的表示理论, 我们得出共差参数最大可能性估计值$\Sigma$的分布, 以及 Diaconis- Ylvisaker conjugate 常数的解析表达, 之前的精确参数$K ⁇ Sigma_ _1美元。 因此, 我们可以通过一个对称组的分组的行动在完整的高斯变数模型类别中进行巴伊西亚模型选择, 我们也可以称之为完整的 RCOP 模型。 我们用一个维度的微小例子来说明我们的结果, 4美元, 和几个用于在周期组中选择的示例, 包括一个以 $p=100美元的高维示例 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员