We study the distribution of the {\it matrix product} $G_1 G_2 \cdots G_r$ of $r$ independent Gaussian matrices of various sizes, where $G_i$ is $d_{i-1} \times d_i$, and we denote $p = d_0$, $q = d_r$, and require $d_1 = d_{r-1}$. Here the entries in each $G_i$ are standard normal random variables with mean $0$ and variance $1$. Such products arise in the study of wireless communication, dynamical systems, and quantum transport, among other places. We show that, provided each $d_i$, $i = 1, \ldots, r$, satisfies $d_i \geq C p \cdot q$, where $C \geq C_0$ for a constant $C_0 > 0$ depending on $r$, then the matrix product $G_1 G_2 \cdots G_r$ has variation distance at most $\delta$ to a $p \times q$ matrix $G$ of i.i.d.\ standard normal random variables with mean $0$ and variance $\prod_{i=1}^{r-1} d_i$. Here $\delta \rightarrow 0$ as $C \rightarrow \infty$. Moreover, we show a converse for constant $r$ that if $d_i < C' \max\{p,q\}^{1/2}\min\{p,q\}^{3/2}$ for some $i$, then this total variation distance is at least $\delta'$, for an absolute constant $\delta' > 0$ depending on $C'$ and $r$. This converse is best possible when $p=\Theta(q)$.
翻译:我们研究的是 $G_1 G_ 2 g_ cdots G_ 美元 美元是正常的随机变量,平均值为0美元,差额为1美元。这种产品出现在无线通信、动态系统和量量运输的研究中。我们显示,每提供美元=1美元,美元=1美元=1美元=1美元=1美元=1美元,美元=1美元=1美元=1美元,其中美元=2美元=1美元=1美元;每美元=1美元=1美元=1美元;每美元=1美元=1美元=1美元;每美元=1美元=1美元=1美元;每美元=1美元=1美元=1美元;每美元=1美元=1美元=1美元;每美元=1美元=0美元=0美元;每美元为每美元=0美元,每美元=0美元=0美元=1美元=0美元; 美元=1美元=2美元=1美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=2美元=30。