Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset contains 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, based on the proposed dataset, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.
翻译:安全是自动驾驶的首要考虑因素。然而,目前尚无发表的数据集直接支持自动驾驶的直接且可解释的安全评估。在本文中,我们提出DeepAccident,这是一个通过逼真的模拟器生成的大规模数据集,其中包含实际驾驶中频繁发生的各种事故场景。所提出的DeepAccident数据集包含57K个标注帧和285K个标注样本,约为具有40K个标注样本的大规模nuScenes数据集的7倍左右。此外,我们基于所提出的数据集提出了一项新任务——端到端的运动和事故预测,可以用于直接评估不同自动驾驶算法的事故预测能力。此外,对于每种情境,我们设置了四辆车以及一台基础设施来记录数据,从而为事故场景提供了多个角度,并使得V2X(车联网)研究在感知和预测任务上成为可能。最后, 我们提出了一个称为V2XFormer的基准V2X模型,它在动作和事故预测以及3D对象检测方面表现出较高的性能,相比之下,它可以胜任单车模型。