The AGM postulates by Alchourr\'on, G\"ardenfors, and Makinson continue to represent a cornerstone in research related to belief change. Katsuno and Mendelzon (K&M) adopted the AGM postulates for changing belief bases and characterized AGM belief base revision in propositional logic over finite signatures. We generalize K&M's approach to the setting of (multiple) base revision in arbitrary Tarskian logics, covering all logics with a classical model-theoretic semantics and hence a wide variety of logics used in knowledge representation and beyond. Our generic formulation applies to various notions of "base" (such as belief sets, arbitrary or finite sets of sentences, or single sentences). The core result is a representation theorem showing a two-way correspondence between AGM base revision operators and certain "assignments": functions mapping belief bases to total - yet not transitive - "preference" relations between interpretations. Alongside, we present a companion result for the case when the AGM postulate of syntax-independence is abandoned. We also provide a characterization of all logics for which our result can be strengthened to assignments producing transitive preference relations (as in K&M's original work), giving rise to two more representation theorems for such logics, according to syntax dependence vs. independence.
翻译:Alchourr\'on, G\'ardenfors 和 Makinson 的AGM 假设, 继续是信仰变化研究的基石。 Katsuno 和 Mendelzon (K&M) 采纳了AGM 假设, 以改变信仰基础, 并将AGM 信仰基础修改定性为假设逻辑, 而不是限定签名。 我们概括了K&M 任意的 Tarskian 逻辑中设定( 多重) 基础修改( 多重) 的方法, 涵盖了典型的模型理论语义学, 因而也包含了在知识代表性和范围以外应用的多种逻辑。 我们的通用提法适用于各种“ 基础” 概念( 如信仰集、 任意或限定的句子或单句子 ) 。 核心结果是代表了AGGM 基础修改操作者与某些“ 任务” 之间的双向对应关系。 我们用K&M 描述信仰基础基础( 而非过渡性 ) 解释之间的关系。 此外, 当AGGM 解释后可以放弃合并独立 时, 我们的推算出一个共同的结果。 我们还提供了一种推论, 使KM 更重的推论的推论 。