Bilevel optimization reveals the inner structure of otherwise oblique optimization problems, such as hyperparameter tuning and meta-learning. A common goal in bilevel optimization is to find stationary points of the hyper-objective function. Although this hyper-objective approach is widely used, its theoretical properties have not been thoroughly investigated in cases where the lower-level functions lack strong convexity. In this work, we take a step forward and study the hyper-objective approach without the typical lower-level strong convexity assumption. Our hardness results show that the hyper-objective of general convex lower-level functions can be intractable either to evaluate or to optimize. To tackle this challenge, we introduce the gradient dominant condition, which strictly relaxes the strong convexity assumption by allowing the lower-level solution set to be non-singleton. Under the gradient dominant condition, we propose the Inexact Gradient-Free Method (IGFM), which uses the Switching Gradient Method (SGM) as the zeroth order oracle, to find an approximate stationary point of the hyper-objective. We also extend our results to nonsmooth lower-level functions under the weak sharp minimum condition.
翻译:暂无翻译