In this paper, we study the adaptive submodular cover problem under the worst-case setting. This problem generalizes many previously studied problems, namely, the pool-based active learning and the stochastic submodular set cover. The input of our problem is a set of items (e.g., medical tests) and each item has a random state (e.g., the outcome of a medical test), whose realization is initially unknown. One must select an item at a fixed cost in order to observe its realization. There is an utility function which maps a subset of items and their states to a non-negative real number. We aim to sequentially select a group of items to achieve a ``target value'' while minimizing the maximum cost across realizations (a.k.a. worst-case cost). To facilitate our study, we assume that the utility function is \emph{worst-case submodular}, a property that is commonly found in many machine learning applications. With this assumption, we develop a tight $(\log (Q/\eta)+1)$-approximation policy, where $Q$ is the ``target value'' and $\eta$ is the smallest difference between $Q$ and any achievable utility value $\hat{Q}<Q$. We also study a worst-case maximum-coverage problem, a dual problem of the minimum-cost-cover problem, whose goal is to select a group of items to maximize its worst-case utility subject to a budget constraint. To solve this problem, we develop a $(1-1/e)/2$-approximation solution.


翻译:在本文中, 我们研究适应性亚模块在最坏情况下的覆盖问题。 这个问题概括了许多先前研究过的问题, 即以池为基础的积极学习和软化子模块覆盖。 我们问题的投入是一组项目( 如医学测试), 每个项目都有随机状态( 例如医学测试的结果), 其实现最初未知。 一个人必须选择一个固定成本的项目, 以观察其实现情况。 有一种实用功能, 将一组项目及其状态映射成一个非负真实数字。 我们的目标是按顺序选择一组项目, 以达到“ 目标值”, 同时将实现的最大成本降到最低成本 (a. k. a. 最差的成本) 。 为了方便我们的研究, 我们假设该功能的功能功能功能是\ emph{ worst- case copulate 。 在许多机器学习应用中通常发现的一种属性。 根据这个假设, 我们开发了一个非常紧的 $( Q/\\ deta)+1 美元- a a a asseral legal- legal legal legal legal legal- legal- pal- legal legal legal legal legal leg) a we. we. we. we. leglegleglegal legleglegal legal legal legal leg leg legal legal legal legal lex legal legal 和 legal lex legal_ legal_ legal_ legal_ legal_ lex_ legal_ legal_ legal_ legal_ lex a a a a a to a a a le le legal legal_ legald legal_ legal_ lex lex a a a lex le le le le le le le le le le lex lex lex lex le le le le le le le

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
10+阅读 · 2021年11月3日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员