The notion of "centre" has been introduced for many algebraic structures in mathematics. A notable example is the centre of a monoid which always determines a commutative submonoid. Monads in category theory are important algebraic structures that may be used to model computational effects in programming languages and in this paper we show how the notion of centre may be extended to strong monads acting on symmetric monoidal categories. We show that the centre of a strong monad $\mathcal T$, if it exists, determines a commutative submonad $\mathcal Z$ of $\mathcal T$, such that the Kleisli category of $\mathcal Z$ is isomorphic to the premonoidal centre (in the sense of Power and Robinson) of the Kleisli category of $\mathcal T$. We provide three equivalent conditions which characterise the existence of the centre of $\mathcal T$ and we show that every strong monad on many well-known naturally occurring categories does admit a centre, thereby showing that this new notion is ubiquitous. We also provide a computational interpretation of our ideas which consists in giving a refinement of Moggi's monadic metalanguage. The added benefit is that this allows us to immediately establish a large class of contextually equivalent programs for computational effects that are described via monads that admit a non-trivial centre by simply considering the richer syntactic structure provided by the refinement.
翻译:“ 中心” 的概念已经引入了数学中许多代数结构。 一个显著的例子 是一个单项的中间点, 它总是决定着一种通量亚分子。 类别理论中的Modad 是一个重要的代数结构, 可以用来在编程语言中模拟计算效果。 在本文中, 我们展示了如何将中心的概念扩展至强大的月球, 在对称单向等级上发挥作用。 我们展示了一个强大的月球中心的核心 $\ mathcal T$, 如果它存在的话, 将确定一个 $\ mathcal Z$ 的交替点 。 在一个已知的自然类别中, $\ mathcal T$ 美元 的交替点 。 这样, Kleislisli 类别中的 $\ mathcal Z$ 类是非等式结构 。 我们提供了三个等同的条件, 用来描述 $\ mathcal $ $ $ 美元中心的存在, 我们显示每个已知的月球 $ $ $ gal Z$ 和我们所认识的自然发生的类别 都承认了一个等值中心, 。 因此, 提供了一种不相等值中心 的变的 的变的 。