We formulate and analyze an adaptive algorithm for isogeometric analysis with hierarchical B-splines for weakly-singular boundary integral equations. We prove that the employed weighted-residual error estimator is reliable and converges at optimal algebraic rate. Numerical experiments with isogeometric boundary elements for the 3D Poisson problem confirm the theoretical results, which also cover general elliptic systems like linear elasticity.
翻译:我们制定并分析一种适应性算法,用B-S-splines等级进行等离子测量分析,用于微弱的线性边界整体方程式。我们证明,所使用的加权-重复误差估计器是可靠的,并且以最佳代数速率趋同。 3D Poisson 问题3D Poisson 问题等离子测量边界元素的数值实验证实了理论结果,其中也包括一般的椭圆系统,如线性弹性系统。