The convergence of many numerical optimization techniques is highly dependent on the initial guess given to the solver. To address this issue, we propose a novel approach that utilizes tensor methods to initialize existing optimization solvers near global optima. Our method does not require access to a database of good solutions. We first transform the cost function, which depends on both task parameters and optimization variables, into a probability density function. The joint probability distribution of the task parameters and optimization variables is approximated using the Tensor Train model which enables efficient conditioning and sampling. Unlike existing methods, we treat the task parameters as random variables and for a given task we generate samples for decision variables from the conditional distribution to initialize the optimization solver. Our method can produce multiple solutions for a given task from different modes when they exist. We first evaluate the approach on benchmark functions for numerical optimization that are hard to solve using gradient-based optimization solvers with a naive initialization. The results show that the proposed method can generate samples close to global optima and from multiple modes. We then demonstrate the generality and relevance of our framework to robotics by applying it to inverse kinematics with obstacles and motion planning problems with a 7-DoF manipulator.
翻译:许多数字优化技术的趋同高度取决于给求解者最初的猜测。 解决这个问题, 我们提出一种新的方法, 利用微量方法在环球optima附近初始化现有的优化求解器。 我们的方法不需要访问一个好解决方案的数据库。 我们首先将成本函数转换成概率密度函数, 取决于任务参数和优化变量, 任务参数和优化变量的共同概率分布使用Tensor 列车模型进行近似, 该模型可以提供高效调制和取样。 与现有方法不同, 我们将任务参数作为随机变量处理, 并针对一项特定任务, 我们从有条件的分布中生成决定变量样本, 以启动优化求解器。 我们的方法可以在存在不同模式时生成给特定任务提供多种解决方案。 我们首先评估数字优化的基准函数, 使用基于梯度的优化求解算器很难解决, 且初始化为天真。 结果表明, 拟议的方法可以生成靠近全球选调和多种模式的样本。 我们然后通过将它应用为具有障碍和动作规划问题的反向运动器, 来证明我们框架对于机器人的普遍性和相关性。</s>