Offline pretraining with a static dataset followed by online fine-tuning (offline-to-online, or OtO) is a paradigm that is well matched to a real-world RL deployment process: in few real settings would one deploy an offline policy with no test runs and tuning. In this scenario, we aim to find the best-performing policy within a limited budget of online interactions. Previous work in the OtO setting has focused on correcting for bias introduced by the policy-constraint mechanisms of offline RL algorithms. Such constraints keep the learned policy close to the behavior policy that collected the dataset, but this unnecessarily limits policy performance if the behavior policy is far from optimal. Instead, we forgo policy constraints and frame OtO RL as an exploration problem: we must maximize the benefit of the online data-collection. We study major online RL exploration paradigms, adapting them to work well with the OtO setting. These adapted methods contribute several strong baselines. Also, we introduce an algorithm for planning to go out of distribution (PTGOOD), which targets online exploration in relatively high-reward regions of the state-action space unlikely to be visited by the behavior policy. By leveraging concepts from the Conditional Entropy Bottleneck, PTGOOD encourages data collected online to provide new information relevant to improving the final deployment policy. In that way the limited interaction budget is used effectively. We show that PTGOOD significantly improves agent returns during online fine-tuning and finds the optimal policy in as few as 10k online steps in Walker and in as few as 50k in complex control tasks like Humanoid. Also, we find that PTGOOD avoids the suboptimal policy convergence that many of our baselines exhibit in several environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员