We provide a detailed evaluation of various image classification architectures (convolutional, vision transformer, and fully connected MLP networks) and data augmentation techniques towards generalization to large spacial translation shifts. We make the following observations: (a) In the absence of data augmentation, all architectures, including convolutional networks suffer degradation in performance when evaluated on translated test distributions. Understandably, both the in-distribution accuracy as well as degradation to shifts is significantly worse for non-convolutional architectures. (b) Across all architectures, even a minimal augmentation of $4$ pixel random crop improves the robustness of performance to much larger magnitude shifts of up to $1/4$ of image size ($8$-$16$ pixels) in the test data -- suggesting a form of meta generalization from augmentation. For non-convolutional architectures, while the absolute accuracy is still low, we see dramatic improvements in robustness to large translation shifts. (c) With sufficiently advanced augmentation ($4$ pixel crop+RandAugmentation+Erasing+MixUp) pipeline all architectures can be trained to have competitive performance, both in terms of in-distribution accuracy as well as generalization to large translation shifts.


翻译:我们详细评估了各种图像分类结构(革命、视觉变压器和完全连接的 MLP 网络)和数据增强技术,以普遍化为大规模和平化翻译转变。我们提出以下意见:(a) 在缺乏数据增强的情况下,所有结构,包括革命网络,在通过翻译测试分布进行评估时,其性能都会退化。可以理解的是,对于非革命结构而言,分配中的准确性以及向转变的降解性都大大恶化。 (b) 在所有结构中,即使最小地增加4美元的像素随机作物,也能够提高性能,使测试数据中的性能大得多地转换到1/4美元的图像大小(8-16美元像素) -- -- 表示从增强中的一种超常化形式。对于非革命结构来说,尽管绝对性精确性仍然很低,但我们看到稳健性向大规模翻译转变的情况却大得多。 (c) 在足够先进的增强性(4美元的像素作物+RandAugation+Erasing+MixUP)的情况下,所有管道结构都可以在大规模转化方面进行竞争性的转变。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年7月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员