Dilation and erosion are two elementary operations from mathematical morphology, a non-linear lattice computing methodology widely used for image processing and analysis. The dilation-erosion perceptron (DEP) is a morphological neural network obtained by a convex combination of a dilation and an erosion followed by the application of a hard-limiter function for binary classification tasks. A DEP classifier can be trained using a convex-concave procedure along with the minimization of the hinge loss function. As a lattice computing model, the DEP classifier assumes the feature and class spaces are partially ordered sets. In many practical situations, however, there is no natural ordering for the feature patterns. Using concepts from multi-valued mathematical morphology, this paper introduces the reduced dilation-erosion (r-DEP) classifier. An r-DEP classifier is obtained by endowing the feature space with an appropriate reduced ordering. Such reduced ordering can be determined using two approaches: One based on an ensemble of support vector classifiers (SVCs) with different kernels and the other based on a bagging of similar SVCs trained using different samples of the training set. Using several binary classification datasets from the OpenML repository, the ensemble and bagging r-DEP classifiers yielded in mean higher balanced accuracy scores than the linear, polynomial, and radial basis function (RBF) SVCs as well as their ensemble and a bagging of RBF SVCs.


翻译:缩放和侵蚀是数学形态学的两个基本操作。 缩放和侵蚀是一种非线性拉链计算方法, 广泛用于图像处理和分析。 放大- 放大- 摄取( DEP) 是一种形态神经网络, 由放大和侵蚀的混合组合获得, 并随后对二进制分类任务适用硬界限函数。 DEP 分类器可以使用连接- 平衡程序进行培训, 并尽量减少断链丢失功能 。 由于调色计算模型, DEP 分类器假定了特性, 类空间是部分订购的。 然而, 在许多实际情况下, 没有自然地排序 。 使用多值数学形态和侵蚀组合组合的组合组合组合组合组合, 并随后对二进制分类任务应用硬化( r- DEP) 功能。 一个 r- DEP 分类器, 使用调制成调序的组合, 这样的调序可以使用两种方法确定: 一种基于支持矢量分类的组合( SVC ) 和由不同精度的精度的精度的精度 C 的精度调调调调调,, 的精调的精调调的精调的精调的精调,,,, 和调的精调的精调的精调的精调的精调的精调的精调的精调的精调的精调的精调。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
6+阅读 · 2019年8月22日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员