We describe a class of algorithms for evaluating posterior moments of certain Bayesian linear regression models with a normal likelihood and a normal prior on the regression coefficients. The proposed methods can be used for hierarchical mixed effects models with partial pooling over one group of predictors, as well as random effects models with partial pooling over two groups of predictors. We demonstrate the performance of the methods on two applications, one involving U.S. opinion polls and one involving the modeling of COVID-19 outbreaks in Israel using survey data. The algorithms involve analytical marginalization of regression coefficients followed by numerical integration of the remaining low-dimensional density. The dominant cost of the algorithms is an eigendecomposition computed once for each value of the outside parameter of integration. Our approach drastically reduces run times compared to state-of-the-art Markov chain Monte Carlo (MCMC) algorithms. The latter, in addition to being computationally expensive, can also be difficult to tune when applied to hierarchical models.
翻译:我们描述一种算法,用来评估某些贝叶斯线性回归模型的后期时间,这种算法具有正常的可能性,而且通常在回归系数之前使用。提议的方法可用于等级混合效应模型,部分集合在一组预测器上,以及随机效应模型,部分集合在两组预测器上。我们展示了两种应用方法的性能,一种应用涉及美国民意测验,另一种应用涉及利用调查数据模拟以色列COVID-19爆发的COVID-19模型。这些算法涉及分析回归系数的边缘化,然后将其余低维密度进行数字整合。这些算法的主要成本是对整合的外部参数的每个值计算一次的静电成形法。我们的方法大大缩短了运行时间,而与最先进的Markov链Monte Carlo(MC)算法相比,后者除了计算成本昂贵外,在应用等级模型时也可能难以调和。