In this chapter, we show how to efficiently model high-dimensional extreme peaks-over-threshold events over space in complex non-stationary settings, using extended latent Gaussian Models (LGMs), and how to exploit the fitted model in practice for the computation of long-term return levels. The extended LGM framework assumes that the data follow a specific parametric distribution, whose unknown parameters are transformed using a multivariate link function and are then further modeled at the latent level in terms of fixed and random effects that have a joint Gaussian distribution. In the extremal context, we here assume that the data level distribution is described in terms of a Poisson point process likelihood, motivated by asymptotic extreme-value theory, and which conveniently exploits information from all threshold exceedances. This contrasts with the more common data-wasteful approach based on block maxima, which are typically modeled with the generalized extreme-value (GEV) distribution. When conditional independence can be assumed at the data level and latent random effects have a sparse probabilistic structure, fast approximate Bayesian inference becomes possible in very high dimensions, and we here present the recently proposed inference approach called "Max-and-Smooth", which provides exceptional speed-up compared to alternative methods. The proposed methodology is illustrated by application to satellite-derived precipitation data over Saudi Arabia, obtained from the Tropical Rainfall Measuring Mission, with 2738 grid cells and about 20 million spatio-temporal observations in total. Our fitted model captures the spatial variability of extreme precipitation satisfactorily and our results show that the most intense precipitation events are expected near the south-western part of Saudi Arabia, along the Red Sea coastline.


翻译:在本章中,我们展示了如何高效地在复杂的非静止环境中,使用扩展潜潜潜潜潜潜潜潜潜潜潜高萨模型(LGMs),在复杂的非静止环境中,在空间上模拟高度、极端峰峰值和超峰值的高峰峰峰峰峰值事件,以及如何在计算长期回报水平时实际利用适合的模型。扩展的LGM框架假设数据遵循特定的参数分布,其未知参数使用多变量链接功能,使用多变量链接功能,然后进一步以具有共同高斯尔萨分布的固定和随机效应在潜值水平上建模。在极端环境中,我们假定数据水平分布以远非静止的非固定和随机效应为基础,数据水平以远端和随机效应为固定和随机效应的固定和随机效应为基础,数据水平假设数据水平的固定独立和随机效应的固定和随机效应,以更远端观测的更替结构、更近近近近点观测点点点点点点点点点点点点点点点点表示数据分布,其动力动力,其动机是无症状、最接近更近点观测点点点点点点点点观察点观察点点点点点观察点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点点,其点点点点点點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點點

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
0+阅读 · 2021年11月29日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员