Gerrymandering is one of the biggest threats to American democracy. By manipulating district lines, politicians effectively choose their voters rather than the other way around. Current gerrymandering identification methods (namely the Polsby-Popper and Reock scores) focus on the compactness of congressional districts, making them extremely sensitive to physical geography. To address this gap, we extend Feng and Porter's 2021 paper, which used the level-set method to turn geographic shapefiles into filtered simplicial complexes, in order to compare precinct level voting data to district level voting data. As precincts are regarded as too small to be gerrymandered, we are able to identify discrepancies between precinct and district level voting data to quantify gerrymandering in the United States. By comparing the persistent homologies of Democratic voting regions at the precinct and district levels, we detect when areas have been "cracked" (split across multiple districts) or "packed" (compressed into one district) for partisan gain. This analysis was conducted for North Carolina House of Representatives elections (2012-2024). North Carolina has been redistricted four times in the past ten years, unusually frequent as most states redistrict decennially, making it a valuable case study. By comparing persistence barcodes at the precinct and district levels (using the bottleneck distance), we show that precinct level voting patterns do not significantly fluctuate biannually, while district level patterns do, suggesting that shifts are likely a result of redistricting rather than voter behavior, providing strong evidence of gerrymandering. This research presents a novel application of topological data analysis in evaluating gerrymandering and shows persistent homology can be useful in discerning gerrymandered districts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员