Motivated by problems in the neural networks setting, we study moduli spaces of double framed quiver representations and give both a linear algebra description and a representation theoretic description of these moduli spaces. We define a network category whose isomorphism classes of objects correspond to the orbits of quiver representations, in which neural networks map input data. We then prove that the output of a neural network depends only on the corresponding point in the moduli space. Finally, we present a different perspective on mapping neural networks with a specific activation function, called ReLU, to a moduli space using the symplectic reduction approach to quiver moduli.
翻译:受神经网络设置问题驱动,我们研究了双形静音表征的模范空间,对这些模范空间进行线性代数描述和表达式理论描述。我们界定了一个网络类别,其天体的无形态类别与静态表征轨道相对应,神经网络在其中绘制输入数据。然后,我们证明神经网络的输出仅取决于模范空间的相应点。最后,我们从不同角度介绍了具有称为ReLU的具体激活功能的神经网络的绘图,使用静电减少方法对静音模量进行调节。