Despite the potential of neural scene representations to effectively compress 3D scalar fields at high reconstruction quality, the computational complexity of the training and data reconstruction step using scene representation networks limits their use in practical applications. In this paper, we analyze whether scene representation networks can be modified to reduce these limitations and whether these architectures can also be used for temporal reconstruction tasks. We propose a novel design of scene representation networks using GPU tensor cores to integrate the reconstruction seamlessly into on-chip raytracing kernels. Furthermore, we investigate the use of image-guided network training as an alternative to classical data-driven approaches, and we explore the potential strengths and weaknesses of this alternative regarding quality and speed. As an alternative to spatial super-resolution approaches for time-varying fields, we propose a solution that builds upon latent-space interpolation to enable random access reconstruction at arbitrary granularity. We summarize our findings in the form of an assessment of the strengths and limitations of scene representation networks for scientific visualization tasks and outline promising future research directions in this field.
翻译:尽管神经场面展示有可能以高重建质量有效地压缩3D弧形场,但利用现场展示网络进行的培训和数据重建步骤的计算复杂性限制了在实际应用中的使用。在本文件中,我们分析是否可以修改现场展示网络以减少这些限制,以及这些结构是否也可以用于时间重建任务。我们提议对现场展示网络进行新的设计,利用GPU 振标核心将重建无缝地纳入芯片的射线内核。此外,我们调查利用图像指导网络培训替代传统的数据驱动方法,并探讨这一替代方法在质量和速度方面的潜在优势和弱点。作为空间超分辨率方法的替代方法,我们提出了在时间变化的田地上利用潜入空间的内插管进行随机访问重建的解决方案。我们以评估科学可视化任务的现场展示网络的长处和局限性的形式总结了我们的调查结果,并概述了该领域未来研究方向的前景。