Scale variation is one of the key challenges in object detection. In this work, we first present a controlled experiment to investigate the effect of receptive fields for scale variation in object detection. Based on the findings from the exploration experiments, we propose a novel Trident Network (TridentNet) aiming to generate scale-specific feature maps with a uniform representational power. We construct a parallel multi-branch architecture in which each branch shares the same transformation parameters but with different receptive fields. Then, we adopt a scale-aware training scheme to specialize each branch by sampling object instances of proper scales for training. As a bonus, a fast approximation version of TridentNet could achieve significant improvements without any additional parameters and computational cost compared with the vanilla detector. On the COCO dataset, our TridentNet with ResNet-101 backbone achieves state-of-the-art single-model results of 48.4 mAP. Codes are available at https://git.io/fj5vR.


翻译:比例变异是物体探测方面的主要挑战之一。 在这项工作中, 我们首先提出一个受控实验, 以调查物体探测中可接受范围变异域的影响。 根据探索实验的结果, 我们提出一个新的三叉戟网络( Trisid Net ), 旨在生成具有统一代表力的尺度特有地图。 我们建立一个平行的多部门结构, 每个分支共享相同的变异参数, 但拥有不同的可接受域 。 然后, 我们通过一个规模认知培训计划, 通过对适当规模的物体进行取样, 使每个分支专业化。 作为奖励, 三叉戟网络的快速近似版本可以在不增加参数和计算成本的情况下与香草探测器取得显著的改进。 在 COCO数据集中, 我们的三叉式网络, ResNet- 101 脊柱骨实现了48.4 mAP 的一模结果。 代码可在 https://git.io/ fj5vR 上查阅。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
大盘点 | 性能最强的目标检测算法
新智元
13+阅读 · 2019年7月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关VIP内容
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
大盘点 | 性能最强的目标检测算法
新智元
13+阅读 · 2019年7月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
4+阅读 · 2018年6月14日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
5+阅读 · 2018年4月17日
Top
微信扫码咨询专知VIP会员