Partitioning a region into districts to favor a particular candidate or a party is commonly known as gerrymandering. In this paper, we investigate the gerrymandering problem in graph theoretic setting as proposed by Cohen-Zemach et al. [AAMAS 2018]. Our contributions in this article are two-fold, conceptual and computational. We first resolve the open question posed by Ito et al. [AAMAS 2019] about the computational complexity of the problem when the input graph is a path. Next, we propose a generalization of their model, where the input consists of a graph on $n$ vertices representing the set of voters, a set of $m$ candidates $\mathcal{C}$, a weight function $w_v: \mathcal{C}\rightarrow {\mathbb Z}^+$ for each voter $v\in V(G)$ representing the preference of the voter over the candidates, a distinguished candidate $p\in \mathcal{C}$, and a positive integer $k$. The objective is to decide if one can partition the vertex set into $k$ pairwise disjoint connected sets (districts) s.t $p$ wins more districts than any other candidate. The problem is known to be NPC even if $k=2$, $m=2$, and $G$ is either a complete bipartite graph (in fact $K_{2,n}$) or a complete graph. This means that in search for FPT algorithms we need to either focus on the parameter $n$, or subclasses of forest. Circumventing these intractable results, we give a deterministic and a randomized algorithms for the problem on paths running in times $2.619^{k}(n+m)^{O(1)}$ and $2^{k}(n+m)^{O(1)}$, respectively. Additionally, we prove that the problem on general graphs is solvable in time $2^n (n+m)^{O(1)}$. Our algorithmic results use sophisticated technical tools such as representative set family and Fast Fourier transform based polynomial multiplication, and their (possibly first) application to problems arising in social choice theory and/or game theory may be of independent interest to the community.
翻译:将一个区域分割成地区, 以有利于某个特定候选人或政党。 通常被称为“ 亮丽” 。 在本文中, 我们调查了 Cohen- Zemach 等人提议的图表理论设置[ AMAS 2018] 中的亮点问题。 我们在本篇文章中的贡献是双倍的、 概念和计算性的。 我们首先解决Ito et al. [AAMAS 2019] 在输入图是一个路径时, 问题的计算复杂性。 其次, 我们提议对它们的模型进行概括化化。 输入包括代表选民一组的 $ O 的硬盘图, 代表一组的 美元 数字( 美元 美元), 代表每个选民的 美元, 代表选民对候选人的偏好 。 即使是知名候选人的 美元, 也代表我们的 数字 搜索 。 目标是要决定, 如果可以将一个或更多的 美元 美元 美元 的 数字,, 将一个已知的 美元 数字 的 。