Every representative democracy must specify a mechanism under which voters choose their representatives. The most common mechanism in the United States -- winner-take-all single-member districts -- both enables substantial partisan gerrymandering and constrains `fair' redistricting, preventing proportional representation in legislatures. We study the design of \textit{multi-member districts (MMDs)}, in which each district elects multiple representatives, potentially through a non-winner-takes-all voting rule. We carry out large-scale analyses for the U.S. House of Representatives under MMDs with different social choice functions, under algorithmically generated maps optimized for either partisan benefit or proportionality. Doing so requires efficiently incorporating predicted partisan outcomes -- under various multi-winner social choice functions -- into an algorithm that optimizes over an ensemble of maps. We find that with three-member districts using Single Transferable Vote, fairness-minded independent commissions would be able to achieve proportional outcomes in every state up to rounding, \textit{and} advantage-seeking partisans would have their power to gerrymander significantly curtailed. Simultaneously, such districts would preserve geographic cohesion, an arguably important aspect of representative democracies. In the process, we open up a rich research agenda at the intersection of social choice and computational redistricting.


翻译:每个有代表性的民主必须规定一个选民选择其代表的机制。美国最常用的机制 -- -- 赢者-所有单一成员选区 -- -- 都能够进行大规模的分析,同时能够进行大量的党派干预,并限制`公平'重新划分,防止立法机构中出现比例代表。我们研究“textit{多成员区(MMDs)”的设计,其中每个区可以选举多个代表,有可能通过非赢者-全票投票规则。我们为具有不同社会选择功能的MMDs下美国众议院进行大规模分析。根据有逻辑绘制的地图,可以优化党派利益或相称性。这样做需要有效地将预测的党派结果 -- -- 在不同多赢者社会选择功能下 -- -- 纳入一种最优于各种地图组合的算法。我们发现,如果三个选区使用单一可转移的选票,公平独立委员会将能够在每个州取得比例结果,直至四舍、通票{和}追求优势的党派代表院将拥有其权力,可以大大削弱党派利益或相称性。这样,这样需要有效地将预测的党派结果纳入一个重要、相互交汇的地域议程。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
3+阅读 · 2018年11月20日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月16日
Arxiv
0+阅读 · 2021年9月14日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
3+阅读 · 2018年11月20日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员